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A Poiseuille-flow problem in a cylindrical capillary in the whole range of Knudsen 
numbers with incomplete tangential momentum accommodation of molecules 
incident on the wall has been worked out. The linear non-homogeneous integral 
equation for the macroscopic gas velocity flow has been solved by the Bubnov- 
Galerkin method. For a limited range of Knudsen numbers, generally known 
results have been obtained. 

An experimental investigation of the rare gases helium, neon and argon in the 
range of Knudsen numbers 103-10-3 has been made on packets consisting of 
10 and 100 glass capillaries with molten walls. Comparison of theoretical and 
experimental data enables us to define both slip constants and tangential 
momentum accommodation coefficients. In  the free-molecule flow regime the 
accommodation coefficients are 0.935, 0.929 and 0-975 for helium, neon and 
argon, respectively. In  the viscous slip-flow regime these coefficients are equal 
to 0~895,0~865and0~919,respectively.Thisdifferencein the tangential momentum 
accommodation coefficients is, most probably, due to the variable density of 
adsorbed molecules coating the capillary wall. Gas viscosity coefficients which 
coincide with those of Kestin within 0.5 % have also been calculated. Argon was 
used as the calibrating gas. 

1. Introduction 
Many kinetic and equilibrium phenomena on the boundary between a gas 

and a solid body (adsorption, slip, temperature jump, etc.) are determined by 
the interaction between a gas molecule and a solid surface. Slip flow on the 
surface is a good example of such an interaction. It is characterized by the 
tangential momentum accommodation coefficient of gas molecules incident on 
the solid surface. In  the Maxwellian interpretation this is manifested by some 
molecules being reflected specularly . 

The comparison of experimental and theoretical data for a rarefied gas flow 
in several common geometries shows the following. 

(i) On the one hand, the observed gas flow rates in free-molecule flow are higher 
than the theoretical ones (in case of completely diffuse scattering) if the capillary 
walls are highly polished or molten (Knudsen 1909; Davis, Levenson & Milleron 
1964). 
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(ii) On the other hand, the observed gas flow rates are lower than those pre- 
dicted theoretically if surface roughness is created artificially (Davis et al. 1964; 
Gade 1913; Huggel 1952; Lund & Berman 1966). 

As has already been shown, by Davis et al. (1964)) de Marcus (1959) and Porod- 
nov et al. (1972), the difference between experimental and theoretical results 
can be explained by taking into consideration capillary surface macroroughness 
where diffuse scattering occurs. Unfortunately, calculations of flows near rough 
surfaces in intermediate and viscous gas flow regimes are rather complicated. 

To make theoretical analysis and experimental observation less complicated 
it is better to use capillaries with highly polished or molten surfaces which can 
be considered smooth. I n  this case, as was mentioned above, the observed gas 
flow rates are higher than theoretical ones in the whole range of Knudsen 
numbers, this difference essentially depending on the kind of gas (Lund & Berman 
1966; Borisov, Porodnov & Suetin 1972). 

It is quite natural to suppose that, if gas transfer takes place in a capillary, 
the increase in the observed gas flow rate (compared with that predicted theo- 
retically) is due to conservation of the tangential momentum component of 
molecules incident on a wall after their reflexion. 

I n  other words, in order to find close agreement between experimental and 
theoretical results, it is necessary to consider the boundary conditions (proposed 
by Maxwell) where molecules are reflected diffusely or specularly . The introduc- 
tion of such boundary conditions can be justified by another experiment, namely, 
by the interaction of molecular beams with solid surfaces (Hurlbut 1963). 

Cercignani & Pagani (1969) have already proposed a number of simplifying 
assumptions in solving this problem. In particular, they have proposed that the 
distribution function perturbation on a surface is independent of the velocity of 
reflected molecules and, therefore, is constant. I n  our opinion, such an assumption 
is not sufficiently accurate. 

I n  this paper a theoretical investigation of gas flow in a cylindrical capillary 
with smooth malls with tangential momentum component accommodation is 
proposed. A brief account of the experimental technique is also given. Accom- 
modation coefficients of some gases are defined and experimental and theoretical 
results are compared. 

2' Theory 2.1. DeJinition of the problem and basic equations 

Let us consider a steady isothermal gas flow in a capillary due to a pressure 
gradient directed along the capillary axis. The capillary is supposed to be so 
long that the end-effects can be neglected; the gas and the walls are at the same 
temperature T. So, to find the net gas flow rate it is necessary to know the gas 
velocity a t  any point of the capillary cross-section, whose area is C; r is the radius 
vector t o  this point (see figure I). 

The velocity distribution function .f must satisfy the Boltzmann equation, 

af af v.-+v2),- = 9 ( f ) ,  
ar a2 

which is of the form 
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FIGURE 1. Problem geometry. 

where z is a co-ordinate along the capillary axis, w, is the z component of the 
absolute molecule velocity, v is the two-dimensional velocity vector in the 
capillary cross-section and 9 ( f )  is the intermolecular collision operator. 

Purther, we shall use the BGK model (Bhatnager, Gross & Krook 1954) for 
the operator 9 ( f ) .  Then, (1) may be written as 

a t  af v.-+?J,- = + ( f q - f ) ,  ar az 

fa = n(z) (27rRoT)-g exp - [w' + (w, - u)']/~R,T, Pa) 
where fq is the local Maxwellian distribution function, ZL is the macrosopic gas 
velocity, R, is the gas constant and 7-l is the collision frequency, which, according 
to Halway (1967), is defined by 

7-l = p/q,  p = nkT, 7 = @5nmAw,. (3) 
I n  (3) we have employed the definition of the absolute pressure p and viscosity 

coefficient q resulting from the Chapman-Enskog approximation for hard 
spherical moleoules ( A  is the mean free path of molecules, w,is the thermal velocity, 
n is the gas density and m is the mass of a molecule). 

It is supposed that the gas perturbation is so small that the distribution func- 
tion f only slightly differs from the Maxwellian onef,, i.e. that f can be written as 

(4) 
(4a) 

f(2, r, c,, C )  = fo(4 11 + M - 2  c,, C) l ,  
fo(z) = n(z) (2nR,T)-iexp [ -Cz-Cz], 

(C, C,) = (v, w,) (2R, T P .  

where C and C, are non-dimensional components of absolute molecule velocity: 

By introducing the linearized local Maxwellian function fa in ( 2 )  (considering 
(3)),  then multiplying ( 2 )  by the capillaryradius a and (2R,T)-B, we obtain anon- 
dimensional equation for the pertubation function q5: 

C .  (aq5laR) +C,V = h'[2C,U-q5(R,CZ,C)]. (5 )  
In  ( 5 )  we have introduced the non-dimensional variables 
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here, Kn is the Knudsen number. The macroscopic non-dimensional gas velocity 
is 

Following Cercignani & Sernagiotto (1966), we introduce the perturbation 
function 

Then the basic kinetic equation (5) for the perturbation function @(R, C) takes 
the form 

C .  [a@(R, C)/aR] + &V = 6[U(R)  - @(R, C)]. (8) 

Equation (8) can be integrated along the arbitrary chosen direction C (Marchuk 
1961; Narasimha 1961), see figure 1. After integration we obtain 

S = IRH-RI, S-S'  = IR-R'I. 

I n  (9) RIM is the non-dimensional radius vector to the point M of the capillary 
surface, \RIM\ = 1; @+(R,,C) is the perturbation function for the molecules 
reflected from the point M in the direction C (see figure 1). 

The function @+(RM,C) must be derived from the boundary conditions 
imposed on the distribution function f(2, r, C,, C). Generally speaking, gas- 
molecule interaction with a hard wall leads to a basic difference between the 
velocity distributions of molecules incident on the wall and those reflected from 
it. The distribution function near the boundary is singular a t  the plane n .  C = 0 
in velocity space (n is the normal to the surface surrounding the gas). Therefore, 
while formulating macrosopic boundary conditions it is necessary to distinguish 
distribution functions of molecules incident on the surface and those reflected 
from it: 

Now we shall make use of a well-known Maxwellian model of the boundary 
conditions (Maxwell 1890). According to this model a certain fraction 1 - E of the 
molecules is supposed to be reflected from the surface specularly, whereas the 
other molecules are scattered diffusely with a Maxwellian velocity distribution, 
i.e. 

f+(& R M ,  c,, C) = EfO(Z) + (1 - s)f-(Z, R M ,  c,, C). (11) 

Besides, because of the axial symmetry of the problem the distribution func- 
tion of molecules incident on the point M equals that of molecules incident on 
the point N (figure I ) ,  i.e. we have 

f-@, R,, cz, C) = f-P, R N ,  Q,, C). (12) 
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Now it is rather simple for us to obtain boundary and symmetry conditions 
of interest for the perturbation function @(R, C) from (1 1) and (12) by considering 
(4) and (7): 

(13) 

(14) 

@+(R,, C) = (1 - E )  @-(RM, C), 

@-(R,, C) = @-(RN, C), (R,I = lRNl = 1. 

The perturbation function @-(R,, C) of molecules incident of the point N may 
also be expressed in terms of @+( R,, C) using (9) for if we suppose that R = R,, 
then we have 

where 1 = IR,-R,I is the length of the chord M N .  Then the perturbation 
function @+(R,, C) can be determined from (13)-( 15) in the form 

Further, in the definition of the macroscopic gas velocity we use the perturbation 
function @(R, C) : 

Also, we introduce simultaneously a new function 

@(R) = 1 - (28/v) U(R) .  

Then by considering (9) and (16) we get the integral equation 

The non-dimensional gas volume flow rate through the capillary cross-section 
X can be defined by 

&(a,€) = U ( R ) d R  = --+- ; ZIO1 $(R) RdR. 

In  the limiting cases of free-molecule flow (6 -+ 0) and viscous slip flow (6 + oo), 
from (17) and (18) one can obtain the following results: 

2 - E  8 
Q(6 -+ 0,  E )  = - - 

6 n4-2-E 
Q ( 6 - t ~ )  =-+-- 

E 3774’ 

4 2 E gT9  

where the numerical value of the slip constant vT for the BGK model is 1.1466. 
In the case of completely diffuse scattering of molecules by the wall, the results 

(19) and (20) are in full agreement with those of Cercignani & Sernagiotto (1966). 
Thus, the problem is to solve the integral equation (17), for a capillary of 

arbitrary cross-section. 
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2.2. Method of solution 

As (17)  is a linear integral equation of the Fredholm type, of the second kind, 
to solve it we can employ the Bubnov-Galerkin method (Michlin 1970). For 
this purpose, we have chosen a system of basic functions {R2”} and, thus, we 
approximate the function +(R) by the following series: 

n 
$(R) = C a”(6,e) RZk.  

k=O 

Quick convergence of the method used enables us to confine our attention to the 
first terms in the expansion (21) (the third term contributes to the sum not more 
than 1 yo). Hence, we shall find the required function Ilr(R) as the sum 

$(R) = a, + a,R2. (22) 

After substituting (22) in (17) it is of great importance that the equation 
obtained should be orthogonal to each of the basic functions Ro and R2. As a 
result we obtain a simple system of algebraic equations defining the unknown 
coefficients a, and a,: 

“11“o + %a1 = n, 
al,ao+a2,a, = &r. 

Here, we have introduced the following notation: 

As $(R) is defined by (22) and (23) we can write (using (18)) the non- 
dimensional gas volume flow rate in the capillary as 

To simplify (24) it is convenient to expand the function K(R, R‘) in a series, 
since for any values of c, 6, G and R the following condition must be satisfied: 

(I-e)exp[-(S/C)IR,-R,I] < 1. 
I n  this case we have 

W 

K(R,R’) = C (I-e)j{$,(SIR-R’I +jalR,-RNl) 
j = O  

+ ( 1 - 8) yo( 61 R - R’ I + (j + 1) 61 R, - R, I )}. (26) 

Here Yo(%) is the Abramowitz (1953) transcendental function 

m 

= S tm exp ( - t 2  - x/t)  tit. 
0 
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It should be mentioned that the series (26) converges very quickly, when 
E N I. Therefore, we confine ourselves to two or three terms of this series for 
the purposes of comparison with experiment. 

After not very complicated but very numerous transformations, the co- 
efficients a,,, a12 and aZ2 (from expansion (26)) may be put in the form which 
is convenient for numerical calculations (see appendix). 

We should like to point out that our results for completely diffuse scattering 
of molecules by a capillary wall ( E  = 1) are in close agreement with those of 
Cercignani & Sernagiotto (1966) in the whole range of Knudsen numbers (the 
divergence is less than 1 %). 

Note that a formula for the non-dimensional gas volume flow rate has also 
been obtained by Cercignani & Pagani (1969). It is essentially different from 
(18)-(20) and for any value of 6 it can be written as 

In  addition, we have calculated the non-dimensional gas volume flow rate 
Q(S,  E )  in the capillary for a tangential momentum accommodation coefficient E 

in the range 0-8-1, a t  intervals of 0.02. We have confined ourselves to three terms 
in the series expansion of the coeEcients yi j  (see appendix). 

Some of the numerical results are given in figure 2 below. 

3. Experiments 
3.1. Measurement technique and treatment of experimental data 

Experimental investigations of the flow of inert gases such as helium, neon and 
argon were carried out by means of a method for unsteady flow proposed by 
Knudsen (1909). The essence of this method is to determine the small pressure- 
difference relaxation time as a function of the mean pressure in the capillary. 
This pressure difference has been observed a t  the ends of a capillary connecting 
two cavities. 

I n  this paper we shall give only a brief description of the main features of the 
experiment since the basic features of the experimental installation and the 
measuring technique are described in detail in Bol'isov, Porodnov & Suetin (1972). 

The experimental installation contains a working chamber consisting of two 
cavities joined by a packet of capillaries, a capacity differential micromanometer 
and a number of vacuum taps and absolute-pressure measuring devices. The 
working chamber, together with the micromanometer and taps, was placed in 
a thermostatically controlled atmosphere which was kept a t  room temperature 
during the experiment. 

Experiments were performed on two packets consisting of I0 and I00 glass 
capillaries with molten walls with different mean radii but the same length-to- 
radius ratio N 600. The deviation of the radii of the capillaries in a packet of 
100 from the mean radius was not more than 2 %. To register a small pressure 
change in the working chamber a capacity differential micromanometer with 
numerical reading was used (Borisov, Kalinin, Porodnov & Suetin 1972). I n  the 
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range of measured frequencies the micromanometer has a linear characteristic 
N 0.1 O h ,  its sensitivity being (3.068 5 0.004) x 10-4N/m2Hz. 

From a conservation equation for the number of gas molecules in the cavities, 
whose volumes are V, and V,, it is not difficult to find the pressure difference 
between the cavities as a function of time: 

Ap = Ap, exp ( - ct) ,  (27) 

In  (27), V = qV,/(q+f) is the reduced system volume; Ap, and Ap are the 
pressure difference initially and at  time t > 0 respectively; b is a constant de- 
pending on the flexure of the micromanometer membrane and was experi- 
mentally determined by two independent methods; M is the gas volume flow 
rate when the pressure difference between the capillary ends equals 1. 

As the frequency of the registering device was proportional to the pressure 
difference between the cavities during the experiments, c can be calculated from 
this time-dependent frequency. Such calculations were performed with the help 
of a computer by the nonlinear least-squares method. In  the calculation of c, 
the relative error in a viscous flow regime is N 0.1 yo, while in a free-molecule 
flow regime it is N 1 yo. 

In  (27) the value of b was determined from the dependence of c onp  in viscous 
slip flow. In  this flow regime the gas volume flow rate with a pressure difference 
equal to I is defined according to a well-known formula, which can be found in 
any book on kinetic theory: 

M = N -  lf4- p ( t = ~ h ) .  
8YL 7ra4 ( “a) 

In  (28), N is a number of capillaries, a is the radius, L is the capillary length, 
7 is the gas viscosity coefficient, < is the slip coefficient, CT is the slip constant, 
h is the free mean path of a molecule and p is an absolute pressure. If the 
theoretical expression for the viscosity coefficient 7 in the Chapman-Enskog 
approximation (7 = 0-Bnmhv,) and the kinetic-theory definition of absolute 
pressure ( p  = nkT) are used, equation (28) takes the form 

M = Ap+B. (29) 

Here, A is inversely proportional to the gas viscosity 7 and B is proportional to 
the slip constant CT. 

From (27) and (29) it is easy to obtain the expression for c as a function of 
absolute pressure, depending on the parameters A,  B and b. 

A value of b equal to  0-136 & 0.002 c.c./Torr was found by averaging all the b’s 
which had been obtained while treating experimental results with the help of 
a computer for various gases, using the nonlinear least-squares method. This 
parameter was also found independently with the help of a cavity volume change 
measurement taken when a small flexure of the micromanometer membrane was 
observed. 

The gas volume flow rate M was calculated from (27). Experimental data 
obtained with the help of packets consisting of 100 and 10 glass capillaries were 
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the same within the limit of experimental error in the whole range of Knudsen 
numbers investigated. 

In  our experiments technically pure gases (purity being > 99.5 %) were used. 
To eliminate the water vapour the gas was passed through a trap containing 
liquid nitrogen, and after that the experimental installation was filled with the 
gas. To investigate the influence of impurities on the gas volume flow rate we 
performed experiments with spectrally pure gases, helium and neon. No effect 
was found, however. 

3.2. Comparison of experimental and theoretical results 
Experimental data in the viscous slip-flow regime were treated with the help of 
the nonlinear least-squares method with three unknown parameters. From (28) 
and (29) we see that A describes the Poiseuille part of the flow, whereas B refers 
to that part of the flow which is characterized by a slip flow on the capillary 
surface. The third parameter, B, in (27) determines the correction due to volume 
changes caused by the micromanometer membrane flexure. The parameters A 
and B enable us to calculate either the capillary radius and the slip constant when 
the gas viscosity is known, or the gas viscosity and the slip constant when the 
capillary radius is known. 

While calculating the mean capillary radius we have used gas viscosity GO- 

efficients from Kestin, Wakeham & Watanabe (1970) and Golubev & Gnezdilov 
(197 l), whereas when calculating gas slip constants we have employed mean radii 
a1 = (49.86 a 0.03) x lo-*cm and CC, = (19.07 -t- 0.03) x 10-3cm for the packets 
consisting of 100 and 10 capillaries, respectively. 

It should be mentioned that the measurement error resulting from using a, 
is the same as the error obtained using capillary calibration by mercury. 

The best way to compare experimental and theoretical data is to consider the 
non-dimensional gas volume flow rate Q as a function of the parameter 6 [see 
equation (18)] over the whole range of Knudsen numbers investigated. The 
experimental value of Q was calculated from 

- 

M ‘ = i(2kT/m)*7ra3/.L’ 

Experimental values of the non-dimensional gas volume flow rate Q as a 
function of 6 for helium and argon as well as theoretical curves of Q(S) calculated 
with the help of (25) are shown in figure 2. From figure 2 it may be clearly seen 
that there is an essential difference between the experimental results and the 
theoretical results calculated under the assumption that completely diffuse 
scattering of molecules takes place at the wall (curve 1). As was mentioned 
above, this difference can be explained by the fact that both specular and 
diffuse scattering in fact occur at  the molten glass surface. 

Therefore, we believe that the difference between the experimental and 
theoretical results is due to incomplete tangential momentum accommodation 
of molecules at the wall. 

In the range 6 < 3 x we have drawn the theoretical curves for the corre- 
sponding values e,  using the analytical expression for Q in the region near to 
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log s 
FIGURE 2. Non-dimensional gas volume flow rate dependence from S and 8 .  

0, helium; 0 ,  argon. Theoretical curves: 1, E = 1; 2, E = 0.975; 3, E = 0-935. 

Gas 
A 

I 1 

Coefficient Helium Neon Argon 

U 1.139 1.152 1.051 

E 0.935 0.929 0.975 

TABLE 1.  The ratio w and the accommodation coefficient 6 in the 
free-molecule flow regime. 

AU x 103 7 6 10 

free-molecule flow. This allowed us to calculate the accommodation coefficients 
which are given in table I, from the experimental data, the error in determining 
8 being less than 1 yo. The value w ,  which is the ratio of the experimental gas 
volume flow rate to the theoretical one, is also given in table I. 

Table 1 and figure 2 show that in the free-molecule flow regime the observed 
gas volume flow rates are 5-15 yo higher than the theoretical ones. This divergence 
is much higher than the experimental error, which is - 1 % for light gases and 
N 1-5 yo for heavy gases in the same flow regimes. Curves 2 and 3 (figure 2) were 
calculated by means of (25) for E = 0.975 and 8 = 0.935, respectively. 

I n  the viscous slip-flow regime, slip constants 6 were calculated according to 
(27) and (29). These constants and their mean-square errors are given in table 2. 
From table 2 it is seen that the experimental slip constants are higher than the 
theoretical ones for purely diffuse scattering of molecules by a wall [see equa- 
tion (20)]. This difference enables us to calculate the tangential momentum 
accommodation coefficients E in the viscous slip-flow regime, using (20). The 
calculated values of E and their mean-square errors are also given in table 2. 

While treating measurements in the viscous slip-flow regime it is important 
to choose experimental values of the gas viscosity. In the case of capillaries 
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Gas 
r A ., 

Coefficient Helium Neon Argon 

d 1.417 1.505 1.350 
AU x 1 0 3  9 4 39 

E 0.895 0.865 0.9 19 
7 x lo8 (N s/m2) 1972 3203 2272 
& A7 x lo8 (N s/m2) 3 5 7 

TABLE 2. Experimental values of the slip constant u, accommodation coefficient 8 and 
viscosity 7. 

calibrated by mercury our method allows evaluation of the gas viscosity co- 
efficients to within an accuracy of 0.2 yo, when the Knudsen number is small 
enough and the slip contribution is of little significance. Thus, we obtained the 
gas viscosities given in table 2 ,  which coincide with those of Kestin et al. (1970) 
to within 0.5%. The calculated viscosity coefficients were adjusted to give 
values at 300 OK. Argon was used as a calibrating gas. 

Appendix 

formulae: 
The coefficients all, aI2 and aZ2 were calculated with the help of the following 

m 
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In  the equations given above, the integrals of the form 

v"r(l-v2)t$,(2Sv)dv 

satisfy the recurrence relation 

21%(6) = (m - I) + 261;53(6). 
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